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Abstract  
Relational databases and static networks have been the mainstream for data-driven biology and 
medicine for decades. Despite the simplicity of these approaches, these static architectures do not 
enable systems biology-based medicine because systems principle is inherently dynamic. Graph 
databases as mutable and dynamic querying platforms define systems biology and enable studying 
cancer as a complex adaptive system. Also, in this article, we introduce a generalized patient-centric 
graph database model that allows integration of any disparate and non-structured data sets and 
enables a hypothesis-generation paradigm for realizing personalized, predictive, preventive, and 
participatory medicine (i.e., P4 medicine). We also provide an example of one such database with a 
model query.  
Introduction  
Limitations of traditional relational databases for longitudinal patient/patient data tracking  
The use of large-scale, multi-dimensional datasets to get insights into the disease is still a significant 
problem. The demand for actionable knowledge in these datasets is even higher, even without 
considering the necessity of aggregating, integrating, and analyzing datasets acquired in longitudinal 
research. Therefore, we must critically evaluate the requirements for computational architecture for 
data organization that would accommodate the broadest range of analyses. Such architecture should 
enable personalized, predictive, preventive, and participatory medicine (i.e., P4 medicine).  
As a simple case of analysis, we can consider associating tumor size between control and 

experimental drug settings with copy 
number and methylation changes in 
specific genes. In traditional analysis 
settings, these correlative pieces of 
evidence are made based on prior 
knowledge, intuition, or computational 
algorithms. At the same time, the data 
is organized in a tabular manner in a 
relational database without explicit 
connections. In the above example, the 
tumor size, copy number, and 
methylation data would typically 
reside in separate tables (see Figure 1) 
in a database while the correlation is 
deduced based on some knowledge 
base, and statistics. This approach 
typically prioritizes genetics over 
epigenetics or vice-versa, implicitly or 
explicitly, without an unbiased 

approach to generating and evaluating hypotheses regardless of the philosophical position to which 
one subscribes.   



 

Further, scalability and data integration across multiple data sources is a significant challenge even 
when constructing static networks from these datasets. Manual examination of these networks (such 
as gene-gene signaling) to determine the pathways would still result in hypothesis confirmation bias. 
Moreover, in constructing these static networks, the mechanism to store and query multiple 
relationships between the data is absent and has to be determined apriori, resulting in an inability to 
generate and evaluate hypotheses dynamically. Most importantly, biological insights using such static 
networks are derived by abstracting and isolating molecular data from patients resulting in 
interpretations that are data-centric than patient-centric and only enable curiosity-driven than 
patient-driven medicine. For example, in performing gene set enrichment analysis on patient-derived 
gene expression data, the molecular signatures and pathways analysis are performed only based on 
the genes and their expression without including the patients who had those gene expressions 
altered. By isolating genes from the patients, we lose the contextual information that would 
otherwise enable personalized medicine. 
Also, from a longitudinal clinical trials perspective, a computational framework to temporally track 
patient and samples outcomes is necessary. These outcomes would constitute any patient response 
or data interpretation involving clinical/molecular information, radiology/pathology images, sample 
processing, and quality control information. While tracking patients and their outcomes in a 
traditional relational database would seem straightforward, such a database design would magnify 
the above-highlighted shortcomings from a temporal analysis standpoint. Moreover, manually 
associating data from two points in time for any two patients would implicitly assume the unit of 
time for disease progression is the same for those patients, which is an unsupported hypothesis. 
Furthermore, almost all such temporal analysis thus far forces a linear time model into patient data, 
an untenable assumption and a significant obstruction to realizing P4 medicine. Hence, we need to 
use non-linear approaches to track patients/samples, which overcomes these limitations. Graph 
databases are non-linear, and relationship (and context) preserving technologies are crucial to 
developing such a platform.  
Graph databases and associated foundational principles  
 A systems biology paradigm for medicine  
Graphs databases are network databases with nodes and edges. Unlike traditional relational 
databases, in graph databases, relationships matter as much as the data themselves. This feature 
provides a systems approach to medicine. The underlying principle behind systems philosophy is that 
“the whole is not equal to the sum of its components,” and interactions between the components 
define the system as much as the components themselves. By explicitly defining the data 
corresponding to the components and their interactions as relationships, we can construct graph 
databases that would enable formal frameworks for systems biology in medicine.  
Figure 2(a) highlights one of the general principles of systems biology1, where multiple high-
throughput data from various technologies are integrated to produce a cycle of new hypotheses, 
insights, and biological questions. However, the underlying integrating framework is usually assumed 
as an abstract, static network with defined relationships than as a graph database. Without the graph 
database as a key technology enabler with an explicit representation, as highlighted in Figure 2, static 
network integration schemes that are assumed or derived don’t represent the dynamic principle 
behind systems philosophy (see the relevance to complex adaptive systems below). Hence, graph 
databases define systems philosophy, and modeling the patient data through a graph database is 
fundamental for enabling systems-based medicine.  



 

From the data perspective, any data 
comes with a context/relationship. 
For example, a mutation in a gene is 
contextual on the patients who 
undergo that mutation in that gene. 
While static network analysis could 
result in an understanding derived 
from a set of mutations (or genes) 
abstracted from patients, graph 
databases would enable including 
patient information in deriving 
directed insights. Thus, graph 
databases provide a compelling 
framework for tracking and querying 
patients and their samples by 

simultaneously storing and modeling data and relationships. We can query the graph database to 
determine causal pathways using probabilistic graph models such as Bayesian belief networks, 
Markov random fields, and other statistical probability models. One significant advantage to such a 
system (as opposed to static networks) is the mutability of the network facilitating hypothesis 
generation using database queries on the node and edge properties. Although there have been 
efforts to model patient outcomes through graph-based frameworks, longitudinally integrating 
patients and their tissues data (imaging or biopsied) has not been attempted.  
Relevance to complex adaptive systems: self-organization, emergence, and systems principle  
Complex Adaptive Systems (CAS) are dynamical, non-linear systems connected through many 
connected parts that adapt, constantly refine, and adjust to their environment. A classic example is 
the swarming behavior of birds, especially starlings, known as "murmurations." Unlike a complicated 
system such as a manufacturing assembly line where the system's performance is fixed and not 
capable of autonomous evolution, the hallmarks of CAS are evolvability and emergence. New 
properties arise from interactions of simpler units resulting in self-organizing behavior, e.g., fractals. 
Also, new and unexpected interactions between the simpler units can shift the system to a new state 
with very different properties. This phenomenon is known as emergence. One of the foundational 
aspects of CAS is that we cannot reliably deduce this self-organizing behavior or emergence in the 
whole system from knowledge of the properties of the simpler isolated units ("the whole is not the 
sum of its parts"). Therefore, systems principle is fundamental to CAS that determines the extent to 
which self-organization and emergence arise in the system.  
Biological systems and especially cancer are classic examples of CAS13. Cancer is a complex ecosystem 
of tumor and host dynamics such as host immune response, microbiome, genetic and epigenetic 
modifications in tissue microenvironment that dynamically organizes itself over time, adapting the 
mechanisms of rapid cell proliferation. For example, in histopathology, there is documentation of a 
self-organizing principle known as "histostatis," a cell-autonomous, self-organization property of 
tumor cells that promotes the generation of the characteristic histomorphology2. As for the property 
of emergence that produces new and unexpected patterns, there is a well-documented phenomenon 
where tens to thousands of chromosomal rearrangements, known as "chromothripsis" occur 
simultaneously while the integrity of the cell is still maintained3 (while it has been speculated that 
chromothripsis as a single devastating assault could be the upper limit of what a cell could tolerate12, 
this event as a classic example of emergent phenomena is yet to be reported). Therefore, from an 



 

empirical standpoint, the cancer ecosystem maintains the phenomena of self-organization and 
emergence. However, it is difficult to determine the extent to which these phenomena operate 
because the systems principle exists only as a philosophical basis in CAS without any proper 
framework. A solid foundation for systems principle in CAS would allow us to understand self-
organization and emergent phenomena in cancer systems. Graph databases, as dynamic and mutable 
data structures, and querying platform fill this void in transforming the systems principle of CAS into 
a rigorous science where we can systematically study the extent to which these phenomena drives 
cancer, as the disease longitudinally evolves in patients. Although complex systems such as the power 
systems and human immune system have been modeled using the graph architecture10, 11, graph 
database as a dynamic and central CAS engine for tracking disease progression and in particular, in 
cancer, is yet to be proposed.  
Network motifs and artificial intelligence  
Network motifs are patterns of subgraphs in a larger graph that are over-represented or confer 
critical functionality to the system under consideration. They are the simple building blocks of the 
larger network4. They have been subject to an extensive study in electrical circuits, ecology, and social 
networks. In molecular biology, several motifs have been identified5-7 as typical patterns in different 
biological networks such as feed-forward loops, bifan network motifs, autoregulation, cascades, and 
positive/negative feedback loops. While we can identify several of these motifs using static networks, 
labeled property graph databases would enable determining such motifs dynamically. This dynamic 
determination is possible because we can use the database query language to combine relationship 
and node properties and identify patterns through various combinations. An open-source 
tool DotMotif8 is an example of the case in point in the context of Connectomics, the study of the 
brain's structural and functional connections between cells.  
Graph databases enable the direct application of artificial intelligence (AI) algorithms through Graph 
Neural Networks (GNNs). GNNs allow learning on graph structures by “embedding” node or edge 
properties in a high-dimensional space which is then passed into a neural architecture for 
classification or clustering tasks. Usually, these embeddings are determined using message passing 
approaches. Using queries on a graph database, we can permute the node or edge properties to 
enable different message passes to determine optimal embeddings for a given learning task. These 
different message passes obtained through queries will enable us to obtain AI-driven directed 
insights from the system. Therefore, a graph database platform will help apply AI algorithms on highly 
unstructured data through GNNs even though a typical neural architecture such as deep learning 
operates on structured datasets.  
A graph schema for the longitudinal patient and patient data tracking  
An example recommendation engine for longitudinal clinical trials  
Figure 3 highlights a graph schema for a recommendation engine for longitudinal clinical trials. The 
schema is designed based on “events” using a property graph model. A node and event are 
synonymous in our model. An event can have a label of sample collection, clinical, immunological, 
imaging, or molecular features. Moreover, two events are connected if there are patients who 
undergo those events. Having patients as edges that connect the events provides a non-linear 
approach to tracking patients and facilitates data integration across various data sources and favors 
scalability.  
Further, our event--patients--event database provides a higher level of generalizability for hypothesis 
generation. For example, relating two events by a patient phenotype, say, “HAS_GBM_G-CIMP,” 
would restrict the hypothesis generation to G-CIMP patients. By associating the events as patients, 



 

we can generate hypotheses on population levels rather than disease levels. For instance, we could 
ask and answer the question “Is PI3K-pathway implicated in human GBMs?” regardless of genetic or 
epigenetic data sources or a specific patient population, which we cannot, if we restrict the 
relationship to “HAS_GBM_G-CIMP.” Thus, this model provides a novel and compelling paradigm for 
data integration at various scales ranging from molecular events in a single patient’s disease to 
integrating imaging, clinical and molecular profile (or genotype) with phenotypic characteristics at 
the population level longitudinally.  
Another advantage in using a graph database over a relational database is in applying graph 

algorithms. Graph algorithms such as 
pathfinding, centrality, community 
detection, and link/node embeddings 
enable powerful approaches to analyzing 
connected data because their mathematics 
is built explicitly on relationships than the 
data themselves. In particular, since the 
edges are synonymous with patients in our 
event--patients--event database, we can 
correlate clinical data such as overall or 
progression-free survival times and 
probabilities with the patient trajectories.   
Figure 4 on the left illustrates our graph 
database with three distinct trajectories 

the patients could undertake marked by red, black, and blue edges. The corresponding survival times 
and probabilities for the patients following the trajectories are plotted using the standard Kaplan-
Meier curves. As we can see, such correlations between the paths and clinical data would allow us to 
identify critical molecular/clinical markers or network motifs and will also enable planning wet-lab 
experiments and clinical trials based on directed biological and clinical insights. The critical point is to 
note that correlations such as these are enabled only because the events are associated with each 
other through patients rather than patient phenotypes or any other relationships. 

 
We note that the association between the events/nodes as patients in this schema will prohibit us 
from answering questions on species levels (for example, is PI3K-pathway implicated in mouse 
GBMs?). However, the relationships could be modeled as species with human patients and any 



 

particular species as properties, allowing us to ask and answer questions on species levels and help 
us design, say, mouse experiments. Although Balaur et al.9 suggest the idea of modeling nodes as 
events, it is for the first time we are proposing modeling edges as patients that would allow us to 
build a generalized hypothesis-generating engine that we can query to directly correlate with survival 
outcomes.  
In general, by leveraging the longitudinal molecular, clinical, and imaging data, we can build a graph 
database-based recommendation engine that will serve to address several testable hypotheses for 
functional, clinical studies and enable iterative employment of the graph strategy in more refined, 
focused inquiries as the pre-clinical/clinical and molecular, imaging profiling data continues to 
expand. We, therefore, for the first time, aim to build a molecular and pre-clinical/clinical graph 
recommendation engine for longitudinal trials, which will serve as a fulcrum for research, clinical 
decision-making, and oncology, in general. However, we note that our model applies to any other 
disease equally well.  
A graph database and a Cypher query  
An example graph database using Glioma Longitudinal Analysis Consortium data  
We have developed a stand-alone version of the database integrating mutations and copy-numbers 
from the Glioma Longitudinal AnalySiS (GLASS) Consortium14 data. GLASS Consortium is a glioma 

specific working group which 
has profiled hundreds of 
primary and recurrent gliomas 
with an established relational 
database (Synapse). Figure 5 
shows the snapshot of the 
Neo4j database (a graph 
database) that incorporates 
recurrence in populations and 
clonal events in patients. It 
also integrates various CNV 
and mutation events and 
essential clinical information 
such as disease classification 
and patient identifier. Using 
this database, we can ask and 
answer questions combining 

CNV, mutations, and patient information to understand mechanisms that lead to glioma initiation 
and progression. For example, let us say we would want to identify strongly associated molecular 
events that lead to recurrence in the IDH Codel subtype. This question can be coded in Cypher query 
language and queried in the database as follows: 
 
 
 
 
 
Figure 6 shows the result of this query that highlights that CIC mutations are centrally involved in 
recurrences in the IDH Codel subtype. By “strong association,” we set the probability of recurrence 
as more significant than 0.3. Given this framework, we have run queries with a varying probability of 

MATCH (m1:Patient:Tissue:IDHcodel) –[r]– (m2:Gene) –- (m3:Tissue:IDHcodel) WHERE 
m1.event_type="TP" AND m3.event_type="R1" OR m3.event_type="TP" AND 
m1.event_type="R1" AND (r.node1_node2 >= 0.3) OR (r.node2_node1 >= 0.3)  
RETURN m1, m2 LIMIT 25 



 

recurrence for strong association and identified CIC as a critical molecule in the recurrent population 
of this subtype.  
Conclusion  
Event-Patients-Event graph database framework is a 
powerful platform for realizing P4 medicine  
In summary, graph databases are dynamic and mutable data 
structures that enable systems approach to medicine 
through the graph query language. In particular, the schema 
we developed where we identify two events through patients 
who undergo those events provides us with a compelling 
framework for building a powerful recommendation engine 
for longitudinal clinical trials. The two main advantages of 
this framework are (1) enabling generalized hypothesis 
generation on the population or species levels (when using 
species instead of patients) and (2) correlating survival times 
with the different trajectories’ patients undergo during 
disease evolution. Moving from the data-centric paradigm to 
implementing this patient-centric framework will advance our objective of realizing P4 medicine well 
within our lifetime. 
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